CARA MENENTUKAN SUATU GRAFIK MEMPUNYAI INVERS/TIDAK
1. Tarik sembarang garis sejajar sumbu x, bila memotong grafik hanya di satu titik, maka grafik tersebut mempunyai invers. Bila tidak demikian, maka grafik tersebut tidak mempunyai invers
2.
Diketahui f: R ® R
f(x) = 2x - 3
Tentukan f-1 (x) !
Jawab:
f one one onto
sehingga f mempunyai invers
misalkan y = image dari x
y = f(x)
y = 2x-3 (yang berarti x = f-1(y))
x = (y+3)/2
f-1(x) = (x+3)/2
3.
Diketahui f: A ® B
f(x) = (x - 2)/(x - 3)
dengan A = {R - {3}} dan B = {R - {-1}}
(baca: A adalah himpunan bilangan riil kecuali 33)
Tentukan f-1(x)
Jawab:
y = (x - 2)/(x - 3)
y(x - 3) = x - 2
yx - 3y = x - 2
x(y - 1) = 3y - 2
x = (3y - 2)/(y - 1) ® f-1(x) = (3x - 2)/(x - 1)
Anggap f : A ® B dan g : B ® C
Didapat fungsi baru (g o f) : A ® C
yang disebut komposisi fungsi dari f dan g
h = g o f
(g o f) (x) = g (f (x))
® yaitu dengan mengerjakan f(x) terlebih dahulu
ket : image f merupakan domain bagi g.
contoh:
1. f:A ® B; g:B ® C
(g o f)(a) = g (f(a)) = g(y) = t
(g o f)(b) = g (f(b)) = g(z) = r
(g o f)(c) = g (f(c)) = g(y) = t
2. f: R ® R ; f(x) = x²
g: R ® R ; g(x) = x + 3 R=riil
maka
(f o g)(x) = f(g(x)) = f(x+3) = (x+3)² = x² + 6x + 9
(g o f)(x) = g(f(x)) = g(x²) = x² + 3
Bila x=2, maka
(f o g)(2) = f(g(2)) = f(5) = 25
(g o f)(2) = g(f(2)) = g(4) = 7
3. Diketahui [rumus]
jika (f o g)(x) = x²
Tentukan g(x) !
jawab:
[rumus]
SIFAT
Bila f : A ® B; g : B ® C ; h : C ® D
maka
(f o g) ¹ (g o f) : tidak komutatif
(h o g) o f = h o (g o f) : asosiatif
0 komentar:
Posting Komentar