Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta
Dalam tulisan ini, kita akan mempelajari dasar-dasar reaksi redoks, mempelajari cara menyetarakan reaksi redoks dengan metode perubahan bilangan oksidasi dan metode setengah reaksi, serta mempelajari seluk-beluk tentang sel volta dan aplikasinya dalam kehidupan sehari-hari.
Reaksi Redoks adalah reaksi yang didalamnya terjadi perpindahan elektron secara berurutan dari satu spesies kimia ke spesies kimia lainnya, yang sesungguhnya terdiri atas dua reaksi yang berbeda, yaitu oksidasi (kehilangan elektron) dan reduksi (memperoleh elektron). Reaksi ini merupakan pasangan, sebab elektron yang hilang pada reaksi oksidasi sama dengan elektron yang diperoleh pada reaksi reduksi. Masing-masing reaksi (oksidasi dan reduksi) disebut reaksi paruh (setengah reaksi), sebab diperlukan dua setengah reaksi ini untuk membentuk sebuah reaksi dan reaksi keseluruhannya disebut reaksi redoks.
Ada tiga definisi yang dapat digunakan untuk oksidasi, yaitu kehilangan elektron, memperoleh oksigen, atau kehilangan hidrogen. Dalam pembahasan ini, kita menggunakan definisi kehilangan elektron. Sementara definisi lainnya berguna saat menjelaskan proses fotosintesis dan pembakaran.
Oksidasi adalah reaksi dimana suatu senyawa kimia kehilangan elektron selama perubahan dari reaktan menjadi produk. Sebagai contoh, ketika logam Kalium bereaksi dengan gas Klorin membentuk garam Kalium Klorida (KCl), logam Kalium kehilangan satu elektron yang kemudian akan digunakan oleh klorin. Reaksi yang terjadi adalah sebagai berikut :
K —–> K+ + e-
Ketika Kalium kehilangan elektron, para kimiawan mengatakan bahwa logam Kalium itu telah teroksidasi menjadi kation Kalium.
Seperti halnya oksidasi, ada tiga definisi yang dapat digunakan untuk menjelaskan reduksi, yaitu memperoleh elektron, kehilangan oksigen, atau memperoleh hidrogen. Reduksi sering dilihat sebagai proses memperoleh elektron. Sebagai contoh, pada proses penyepuhan perak pada perabot rumah tangga, kation perak direduksi menjadi logam perak dengan cara memperoleh elektron. Reaksi yang terjadi adalah sebagai berikut :
Ag+ + e- ——> Ag
Ketika mendapatkan elektron, para kimiawan mengatakan bahwa kation perak telah tereduksi menjadi logam perak.
Baik oksidasi maupun reduksi tidak dapat terjadi sendiri, harus keduanya. Ketika elektron tersebut hilang, sesuatu harus mendapatkannya. Sebagai contoh, reaksi yang terjadi antara logam seng dengan larutan tembaga (II) sulfat dapat dinyatakan dalam persamaan reaksi berikut :
Zn(s) + CuSO4(aq) ——> ZnSO4(aq) + Cu(s)
Zn(s) + Cu2+(aq) ——> Zn2+(aq) + Cu(s) (persamaan ion bersih)
Sebenarnya, reaksi keseluruhannya terdiri atas dua reaksi paruh :
Zn(s) ——> Zn2+(aq) + 2e-
Cu2+(aq) + 2e- ——> Cu(s)
Logam seng kehilangan dua elektron, sedangkan kation tembaga (II) mendapatkan dua elektron yang sama. Logam seng teroksidasi. Tetapi, tanpa adanya kation tembaga (II), tidak akan terjadi suatu apa pun. Kation tembaga (II) disebut zat pengoksidasi (oksidator). Oksidator menerima elektron yang berasal dari spesies kimia yang telah teroksidasi.
Sementara kation tembaga (II) tereduksi karena mendapatkan elektron. Spesies yang memberikan elektron disebut zat pereduksi (reduktor). Dalam hal ini, reduktornya adalah logam seng. Dengan demikian, oksidator adalah spesies yang tereduksi dan reduktor adalah spesies yang teroksidasi. Baik oksidator maupun reduktor berada di ruas kiri (reaktan) persamaan redoks.
Elektrokimia adalah salah satu dari cabang ilmu kimia yang mengkaji tentang perubahan bentuk energi listrik menjadi energi kimia dan sebaliknya. Proses elektrokimia melibatkan reaksi redoks. Proses transfer elektron akan menghasilkan sejumlah energi listrik. Aplikasi elektrokimia dapat diterapkan dalam dua jenis sel, yaitu sel volta dan sel elektrolisis. Sebelum membahas kedua jenis sel tersebut, kita terlebih dahulu akan mempelajari metode penyetaraan reaksi redoks.
Persamaan reaksi redoks biasanya sangat kompleks, sehingga metode penyeteraan reaksi kimia biasa tidak dapat diterapkan dengan baik. Dengan demikian, para kimiawan mengembangkan dua metode untuk menyetarakan persamaan redoks. Salah satu metode disebut metode perubahan bilangan oksidasi (PBO), yang berdasarkan pada perubahan bilangan oksidasi yang terjadi selama reaksi. Metode lain, disebut metode setengah reaksi (metode ion-elektron). Metode ini melibatkan dua buah reaksi paruh, yang kemudian digabungkan menjadi reaksi redoks keseluruhan.
Berikut ini penjelasan sekilas tentang metode setengah reaksi : persamaan redoks yang belum setara diubah menjadi persamaan ion dan kemudian dipecah menjadi dua reaksi paruh, yaitu reaksi oksidasi dan reaksi reduksi; setiap reaksi paruh ini disetarakan dengan terpisah dan kemudian digabungkan untuk menghasilkan ion yang telah disetarakan; akhirnya, ion-ion pengamat kembali dimasukkan ke persamaan ion yang telah disetarakan, mengubah reaksi menjadi bentuk molekulnya.
Sebagai contoh, saya akan menjelaskan langkah-langkah untuk menyetarakan persamaan redoks berikut :
Fe2+(aq) + Cr2O72-(aq) ——> Fe3+(aq) + Cr3+(aq)
1. Menuliskan persamaan reaksi keseluruhan
Fe2+ + Cr2O72- ——> Fe3+ + Cr3+
2. Membagi reaksi menjadi dua reaksi paruh
Fe2+ ——> Fe3+
Cr2O72- ——> Cr3+
3. Menyetarakan jenis atom dan jumlah atom dan muatan pada masing-masing setengah reaksi; dalam suasana asam, tambahkan H2O untuk menyetarakan atom O dan H+ untuk menyetarakan atom H
Fe2+ ——> Fe3+ + e-
6 e- + 14 H+ + Cr2O72- ——> 2 Cr3+ + 7 H2O
4. Menjumlahkan kedua setengah reaksi; elektron pada kedua sisi harus saling meniadakan; jika oksidasi dan reduksi memiliki jumlah elektron yang berbeda, maka harus disamakan terlebih dahulu
6 Fe2+ ——> 6 Fe3+ + 6 e- ……………… (1)
6 e- + 14 H+ + Cr2O72- ——> 2 Cr3+ + 7 H2O ……………… (2)
6 Fe2+ + 14 H+ + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 7 H2O ………………… [(1) + (2)]
5. Mengecek kembali dan yakin bahwa kedua ruas memiliki jenis atom dan jumlah atom yang sama, serta memiliki muatan yang sama pada kedua ruas persamaan reaksi
Untuk reaksi yang berlangsung dalam suasana basa, tambahkan ion OH- dalam jumlah yang sama dengan ion H+ pada masing-masing ruas untuk menghilangkan ion H+. Persamaan reaksi tersebut berubah menjadi sebagai berikut :
6 Fe2+ + 14 H+ + 14 OH- + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 7 H2O + 14 OH-
6 Fe2+ + 14 H2O + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 7 H2O + 14 OH-
6 Fe2+ + 7 H2O + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 14 OH-
Berikut ini adalah contoh lain penyelesaian penyetaraan persamaan reaksi redoks :
Cu(s) + HNO3(aq) ——> Cu(NO3)2(aq) + NO(g) + H2O(l)
1. Mengubah reaksi redoks yang belum disetarakan menjadi bentuk ion
Cu + H+ + NO3- ——> Cu2+ + 2 NO3- + NO + H2O
2. Menentukan bilangan oksidasi dan menuliskan dua setengah reaksi (oksidasi dan reduksi) yang menunjukkan spesies kimia yang telah mengalami perubahan bilangan oksidasi
Cu ——> Cu2+
NO3- ——> NO
3. Menyetarakan semua atom, dengan pengecualian untuk oksigen dan hidrogen
Cu ——> Cu2+
NO3- ——> NO
4. Menyetarakan atom oksigen dengan menambahkan H2O pada ruas yang kekurangan oksigen
Cu ——> Cu2+
NO3- ——> NO + 2 H2O
5. Menyetarakan atom hidrogen dengan menambahkan H+ pada ruas yang kekurangan hidrogen
Cu ——> Cu2+
4 H+ + NO3- ——> NO + 2 H2O
6. Menyetarakan muatan ion pada setiap ruas setengah reaksi dengan menambahkan elektron
Cu ——> Cu2+ + 2 e-
3 e- + 4 H+ + NO3- ——> NO + 2 H2O
7. Menyetarakan kehilangan elektron dengan perolehan elektron antara kedua setengah reaksi
3 Cu ——> 3 Cu2+ + 6 e-
6 e- + 8 H+ + 2 NO3- ——> 2 NO + 4 H2O
8. Menggabungkan kedua reaksi paruh tersebut dan menghilangkan spesi yang sama di kedua sisi; elektron selalu harus dihilangkan (jumlah elektron di kedua sisi harus sama)
3 Cu ——> 3 Cu2+ + 6 e- …………………….. (1)
6 e- + 8 H+ + 2 NO3 ——> 2 NO + 4 H2O …………………….. (2)
3 Cu + 8 H+ + 2 NO3- ——> 3 Cu2+ + 2 NO + 4 H2O …………………………….. [(1) + (2)]
9. Mengubah persamaan reaksi kembali ke bentuk molekulnya dengan menambahkan ion pengamat
3 Cu + 8 H+ + 2 NO3- + 6 NO3- ——> 3 Cu2+ + 2 NO + 4 H2O + 6 NO3-
3 Cu + 8 HNO3 ——> 3 Cu(NO3)2 + 2 NO + 4 H2O
10. Memeriksa kembali untuk meyakinkan bahwa semua atomnya telah setara, semua muatannya telah setara, dan semua koefisiennya ada dalam bentuk bilangan bulat terkecil
Metode lain yang digunakan dalam menyetarakan persamaan reaksi redoks adalah metode perubahan bilangan oksidasi (PBO). Saya akan menjelaskan langkah-langkah penyetaraan reaksi redoks dengan metode PBO melalu contoh berikut :
MnO4-(aq) + C2O42-(aq) ——> Mn2+(aq) + CO2(g)
1. Menentukan bilangan oksidasi masing-masing unsur
MnO4- + C2O42- ——> Mn2+ + CO2
+7 -2 +3 -2 +2 +4 -2
2. Menentukan unsur yang mengalami perubahan bilangan oksidasi serta besarnya perubahan bilangan oksidasi
Mn mengalami perubahan bilangan oksidasi dari +7 menjadi +2; besarnya perubahan bilangan oksidasi (Δ) sebesar 5
C mengalami perubahan bilangan oksidasi dari +3 menjadi +4; besarnya perubahan bilangan okisdasi (Δ) sebesar 1
3. Mengalikan perubahan bilangan oksidasi (Δ) dengan jumlah atom yang mengalami perubahan bilangan oksidasi
Mn : Δ = 5 x 1 = 5
C : Δ = 1 x 2 = 2
4. Menyamakan jumlah atom yang mengalami perubahan bilangan oksidasi pada masing-masing ruas
MnO4- + C2O42- ——> Mn2+ + 2 CO2
5. Menyamakan perubahan bilangan oksidasi (Δ); bilangan pengali dijadikan sebagai koefisien reaksi baru
Mn dikalikan 2 dan C dikalikan 5, sehingga Δ kedua unsur sama, yaitu sebesar 10
2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2
6. Dalam tahap ini, reaksi hampir selesai disetarakan; selanjutnya atom O dapat disetarakan dengan menambahkan H2O pada ruas yang kekurangan atom O; sementara untuk menyetarakan atom H, gunakan H+
16 H+ + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 8 H2O
7. Memeriksa kembali untuk meyakinkan bahwa semua atomnya telah setara, semua muatannya telah setara, dan semua koefisiennya ada dalam bentuk bilangan bulat terkecil
Untuk reaksi yang berlangsung dalam suasana basa, tambahkan ion OH- dalam jumlah yang sama dengan ion H+ pada masing-masing ruas untuk menghilangkan ion H+. Persamaan reaksi tersebut berubah menjadi sebagai berikut :
16 OH- + 16 H+ + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 8 H2O + 16 OH-
16 H2O + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 8 H2O + 16 OH-
8 H2O + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 16 OH-
Selanjutnya, saya akan kembali memberikan sebuah contoh penyelesaian persamaan reaksi redoks dengan metode PBO :
MnO(s) + PbO2(s) + HNO3(aq) ——> HMnO4(aq) + Pb(NO3)2(aq) + H2O(l)
1. Mengubah reaksi redoks yang belum disetarakan menjadi bentuk ion
MnO + PbO2 + H+ + NO3‑ ——> H+ + MnO4- + Pb2+ + 2 NO3- + H2O
2. Menentukan bilangan oksidasi masing-masing unsur
MnO + PbO2 + H+ + NO3‑ ——> H+ + MnO4- + Pb2+ + 2 NO3- + H2O
+2 -2 +4 -2 + 1 +5 -2 +1 +7 -2 +2 +5 -2 +1 -2
3. Menuliskan kembali semua unsur yang mengalami perubahan bilangan oksidasi; ion pengamat tidak disertakan
MnO + PbO2 ——> MnO4- + Pb2+
+2 -2 +4 -2 +7 -2 +2
4. Menentukan unsur yang mengalami perubahan bilangan oksidasi serta besarnya perubahan bilangan oksidasi
Mn mengalami perubahan bilangan oksidasi dari +2 menjadi +7; besarnya perubahan bilangan oksidasi (Δ) sebesar 5
Pb mengalami perubahan bilangan oksidasi dari +4 menjadi +2; besarnya perubahan bilangan okisdasi (Δ) sebesar 2
5. Mengalikan perubahan bilangan oksidasi (Δ) dengan jumlah atom yang mengalami perubahan bilangan oksidasi
Mn : Δ = 5 x 1 = 5
Pb : Δ = 2 x 1 = 2
6. Menyamakan jumlah atom yang mengalami perubahan bilangan oksidasi pada masing-masing ruas
MnO + PbO2 ——> MnO4- + Pb2+
7. Menyamakan perubahan bilangan oksidasi (Δ); bilangan pengali dijadikan sebagai koefisien reaksi baru
Mn dikalikan 2 dan Pb dikalikan 5, sehingga Δ kedua unsur sama, yaitu sebesar 10
2 MnO + 5 PbO2 ——> 2 MnO4- + 5 Pb2+
8. Dalam tahap ini, reaksi hampir selesai disetarakan; selanjutnya atom O dapat disetarakan dengan menambahkan H2O pada ruas yang kekurangan atom O; sementara untuk menyetarakan atom H, gunakan H+
8 H+ + 2 MnO + 5 PbO2 ——> 2 MnO4- + 5 Pb2+ + 4 H2O
9. Mengubah persamaan reaksi kembali ke be ntuk molekulnya dengan menambahkan ion pengamat
10 NO3- + 2 H+ + 8 H+ + 2 MnO + 5 PbO2 ——> 2 MnO4- + 5 Pb2+ + 4 H2O + 2 H+ + 10 NO3-
2 MnO + 5 PbO2 + 10 HNO3 ——> 2 HMnO4 + 5 Pb(NO3)2 + 4 H2O
10. Memeriksa kembali untuk meyakinkan bahwa semua atomnya telah setara, semua muatannya telah setara, dan semua koefisiennya ada dalam bentuk bilangan bulat terkecil
Pada pembahasan sebelumnya, kita telah mengetahui bahwa saat sepotong logam seng dicelupkan ke dalam larutan tembaga (II) sulfat, akan terjadi reaksi redoks. Logam seng akan teroksidasi menjadi ion Zn2+, sementara ion Cu2+ akan tereduksi menjadi logam tembaga yang menutupi permukaan logam seng. Persamaan untuk reaksi ini adalah sebagai berikut :
Zn(s) + Cu2+(aq) ——> Zn2+(aq) + Cu(s)
Ini merupakan contoh perpindahan elektron langsung. Logam seng memberikan dua elektron (menjadi teroksidasi) ke ion Cu2+ yang menerima kedua elektron tersebut (mereduksinya menjadi logam tembaga). Logam tembaga akan melapisi permukaan logam seng.
Seandainya kedua reaksi paruh tersebut dapat dipisahkan, sehingga ketika logam seng teroksidasi, elektron akan dilepaskan dan dialirkan melalui kawat penghantar untuk mencapai ion Cu2+ (perpindahan elektron tidak langsung), kita akan mendapatkan sesuatu yang bermanfaat. Selama reaksi kimia berlangsung, akan terjadi aliran elektron yang menghasilkan energi listrik. Peralatan yang dapat mengubah energi kimia (reaksi redoks) menjadi arus listrik (aliran elektron = energi listrik) dikenal dengan Sel Volta atau Sel Galvani.
Salah satu contoh sel volta yang sering digunakan para kimiawan adalah Sel Daniell. Sel volta ini menggunakan reaksi antara logam Zn dan ion Cu2+ untuk menghasilkan listrik. Sel Daniell diberi nama menurut penemunya, John Frederic Daniell, seorang kimiawan Inggris yang menemukannya pada tahun 1836).
Pada Sel Daniell, sepotong logam seng dimasukkan ke dalam larutan seng (II) sulfat, ZnSO4(aq), pada satu wadah. Sementara, sepotong logam tembaga juga dimasukkan ke dalam larutan tembaga (II) sulfat, CuSO4(aq), pada wadah lainnya. Potongan logam tersebut disebut elektroda yang berfungsi sebagai ujung akhir atau penampung elektron. Kawat penghantar akan menghubungkan elektroda-elektrodanya. Selanjutnya, rangkaian sel dilengkapi pula dengan jembatan garam. Jembatan garam, biasanya berupa tabung berbentuk U yang terisi penuh dengan larutan garam pekat, memberikan jalan bagi ion untuk bergerak dari satu tempat ke tempat lainnya untuk menjaga larutan agar muatan listriknya tetap netral.
Sel Daniell bekerja atas dasar prinsip reaksi redoks. Logam seng teroksidasi dan membebaskan elektron yang mengalir melalui kawat menuju elektroda tembaga. Selanjutnya, elektron tersebut digunakan oleh ion Cu2+ yang mengalami reduksi membentuk logam tembaga. Ion Cu2+ dari larutan tembaga (II) sulfat akan melapisi elektroda tembaga, sedangkan elektroda seng semakin berkurang (habis). Kation-kation di dalam jembatan garam berpindah ke wadah yang mengandung elektroda tembaga untuk menggantikan ion tembaga yang semakin habis. Sebaliknya, anion-anion pada jembatan garam berpindah ke sisi elektroda seng, yang menjaga agar larutan yang mengandung ion Zn2+ tetap bermuatan listrik netral.
Elektroda seng disebut anoda, yaitu elektroda yang menjadi tempat terjadinya reaksi oksidasi. Oleh karena anoda melepaskan elektron, maka anoda kaya akan elektron sehingga diberi tanda negatif (kutub negatif). Sementara, elektroda tembaga disebut katoda, yaitu elektroda yang menjadi tempat terjadinya reaksi reduksi. Oleh karena katoda menerima elektron, maka katoda kekurangan elektron sehingga diberi tanda positif (kutub positif).
Reaksi yang terjadi pada masing-masing elektroda (reaksi setengah sel) adalah sebagai berikut :
Anoda (-) : Zn(s) ——> Zn2+(aq) + 2e- ……………………. (1)
Katoda (+) : Cu2+(aq) + 2e- ——> Cu(s) ……………………. (2)
Reaksi Sel : Zn(s) + Cu2+(aq) ——> Zn2+(aq) + Cu(s) …………………………… [(1) + (2)]
Munculnya arus listrik (aliran elektron) yang terjadi dari anoda menuju katoda disebabkan oleh perbedaan potensial elektrik antara kedua elektroda tersebut. Melalui percobaan, perbedaan potensial elektrik antara katoda dan anoda dapat diukur dengan voltmeter dan hasilnya berupa potensial standar sel (E°sel). Semakin besar perbedaan potensial elektrik, semakin besar pula arus listrik dan potensial standar sel yang dihasilkan.
Reaksi yang terjadi pada sel volta dapat dinyatakan dalam bentuk yang lebih ringkas, yaitu notasi sel. Sesuai dengan kesepakatan, reaksi oksidasi dinyatakan di sisi kiri, sementara reaksi reduksi dinyatakan di sisi kanan. Notasi sel untuk Sel Daniell adalah sebagai berikut :
Zn(s) / Zn2+(aq) // Cu2+(aq) / Cu(s)
Saat konsentrasi ion Cu2+ dan Zn2+ masing-masing 1 M, terlihat pada voltmeter bahwa besarnya potensial standar sel (E°sel) bagi Sel Daniell adalah 1,10 V pada suhu 25°C. Oleh karena reaksi sel merupakan hasil penjumlahan dari dua reaksi setengah sel, maka potensial standar sel merupakan hasil penjumlahan dari dua potensial standar setengah sel. Pada Sel Daniell, potensial standar sel merupakan hasil penjumlahan potensial elektroda Cu dan Zn. Dengan mengetahui potensial standar dari masing-masing elektroda, kita dapat menentukan besarnya potensial standar sel lain yang terbentuk. Potensial yang digunakan dalam pemahasan ini adalah potensial standar reduksi.
Potensial standar reduksi masing-masing elektroda dapat ditentukan dengan membandingkannya terhadap elektroda standar (acuan), yaitu elektroda hidrogen standar (SHE = Standard Hydrogen Electrode). Keadaan standar yang dimaksud adalah saat tekanan gas H2 sebesar 1 atm, konsentrasi larutan ion H+ sebesar 1 M, dan dan pengukuran dilakukan pada suhu 25°C. Sesuai dengan kesepakatan, SHE memiliki potensial standar reduksi sebesar nol (E°red SHE = 0).
2 H+ (1 M) + 2 e- ——> H2 (1 atm) E°red = 0 V
SHE dapat digunakan untuk menentukan besarnya potensial standar reduksi (E°red) elektroda lainnya. Dengan demikian, kita dapat menyusun suatu daftar yang berisi urutan nilai E°red elektroda-elektroda, dari yang terkecil (paling negatif) hingga yang terbesar (paling positif). Susunan elektroda-elektroda tersebut di kenal dengan istilah Deret Volta (deret kereaktifan logam).
Li – K – Ba – Sr – Ca – Na – Mg – Al – Mn – Zn – Cr – Fe – Cd – Co – Ni – Sn – Pb – H+ – Cu – Ag – Hg – Pt – Au
Logam-logam yang terletak di sisi kiri H+ memiliki E°red bertanda negatif. Semakin ke kiri, nilai E°red semakin kecil (semakin negatif). Hal ini menandakan bahwa logam-logam tersebut semakin sulit mengalami reduksi dan cenderung mengalami oksidasi. Oleh sebab itu, kekuatan reduktor akan meningkat dari kanan ke kiri. Sebaliknya, logam-logam yang terletak di sisi kanan H+ memiliki E°red bertanda positif. Semakin ke kanan, nilai E°red semakin besar (semakin positif). Hal ini berarti bahwa logam-logam tersebut semakin mudah mengalami reduksi dan sulit mengalami oksidasi. Oleh sebab itu, kekuatan oksidator akan meningkat dari kiri ke kanan. Singkat kata, logam yang terletak disebelah kanan relatif terhadap logam lainnya, akan mengalami reduksi. Sementara, logam yang terletak di sebelah kiri relatif terhadap logam lainnya, akan mengalami oksidasi. Logam yang terletak disebelah kiri relatif terhadap logam lainnya mampu mereduksi ion logam menjadi logam (mendesak ion dari larutannya menjadi logam). Sebaliknya, logam yang terletak di sebelah kanan relatif terhadap logam lainnya mampu mengoksidasi logam menjadi ion logam (melarutkan logam menjadi ion dalam larutannya).
Sebagai contoh, kita ingin merangkai sebuah sel volta dengan menggunakan elektroda Fe dan Ni. Berdasarkan susunan logam pada deret volta, logam Fe terletak di sebelah kiri relatif terhadap logam Ni. Hal ini menandakan bahwa logam Ni lebih mudah tereduksi dibandingkan logam Fe. Akibatnya, dalam sel volta, elektroda Ni berfungsi sebagai katoda, sedangkan elektroda Fe berfungsi sebagai anoda. Reaksi yang terjadi pada sel volta adalah sebagai berikut :
Katoda (+) : Ni2+ + 2 e- ——> Ni ……………………. (1)
Anoda (-) : Fe ——> Fe2+ + 2 e- ……………………. (2)
Reaksi Sel : Fe + Ni2+ ——> Fe2+ + Ni …………………………………… [(1) + (2)]
Notasi Sel : Fe / Fe2+ // Ni2+ / Ni
Sesuai dengan kesepakatan, potensial sel (E°sel) merupakan kombinasi dari E°red katoda dan E°red anoda, yang ditunjukkan melalui persamaan berikut :
E°sel = E° katoda – E° anoda
Potensial reduksi standar (E°red) masing-masing elektroda dapat dilihat pada Tabel Potensial Standar Reduksi. Dari tabel, terlihat bahwa nilai E°red Fe adalah sebesar -0,44 V. Sementara nilai E°red Ni adalah sebesar -0,25 V. Dengan demikian, nilai E°sel Fe/Ni adalah sebagai berikut :
E°sel = -0,25 – (-0,44) = +0,19 V
Suatu reaksi redoks dapat berlangsung spontan apabila nilai E°sel positif. Reaksi tidak dapat berlangsung spontan apabila nilai E°sel negatif. Reaksi yang dapat berlangsung spontan justru adalah reaksi kebalikannya.
Apabila larutan tidak dalam keadaan standar, maka hubungan antara potensial sel (Esel) dengan potensial sel standar (E°sel) dapat dinyatakan dalam persamaan Nerst berikut ini :
E sel = E°sel – (RT/nF) ln Q
Pada suhu 298 K (25°C), persamaan Nerst berubah menjadi sebagai berikut :
E sel = E°sel – (0,0257/n) ln Q
E sel = E°sel – (0,0592/n) log Q
Esel = potensial sel pada keadaan tidak standar
E°sel = potensial sel pada keadaan standar
R = konstanta gas ideal = 8,314 J/mol.K
T = suhu mutlak (K) [dalam hal ini, kita menggunakan temperatur kamar, 25°C atau 298 K]
n = jumlah mol elektron yang terlibat dalam redoks
F = konstanta Faraday = 96500 C/F
Q = rasio konsentrasi ion produk terhadap konsentrasi ion reaktan
Selama proses reaksi redoks berlangsung, elektron akan mengalir dari anoda menuju katoda. Akibatnya, konsentrasi ion reaktan akan berkurang, sebaliknya konsentrasi ion produk akan bertambah. Nilai Q akan meningkat, yang menandakan bahwa nilai Esel akan menurun. Pada saat reaksi mencapai kesetimbangan, aliran elektron akan terhenti. Akibatnya, Esel = 0 dan Q = K (K= konstanta kesetimbangan kimia). Dengan demikian, konstanta kesetimbangan kimia (K) dapat ditentukan melalui sel volta.
Melalui pembahasan persamaan Nerst, dapat terlihat bahwa besarnya potensial sel dipengaruhi oleh konsentrasi. Dengan demikian, kita dapat merakit sel volta yang tersusun dari dua elektroda yang identik, tetapi masing-masing memiliki konsentrasi ion yang berbeda. Sel seperti ini dikenal dengan istilah Sel Konsentrasi.
Sebagai contoh, sel konsentrasi dengan elektroda Zn, masing-masing memiliki konsentrasi ion seng sebesar 1,0 M dan 0,1 M. Larutan yang relatif pekat akan mengalami reduksi, sementara larutan yang lebih encer mengalami oksidasi. Potensial standar sel (E°sel) untuk sel konsentrasi adalah nol (0). Reaksi yang terjadi pada sel konsentrasi Zn adalah sebagai berikut :
Katoda (+) : Zn2+ (1,0 M) + 2 e- ——> Zn …………………….. (1)
Anoda (-) : Zn ——> Zn2+ (0,1 M) + 2 e‑ …………………….. (2)
Reaksi Sel : Zn2+ (1,0 M) ——> Zn2+ (0,1 M) …………………………….. [(1) + (2)]
Notasi Sel : Zn / Zn2+ (0,1 M) // Zn2+ (1,0 M) / Zn
Potensial sel konsentrasi dapat diperoleh melalui persamaan Nerst berikut :
E sel = E°sel – (0,0257/2) ln ([Zn2+] encer / [Zn2+] pekat)
E sel = 0 – (0,0257/2) ln [(0,1] / [1,0])
E sel = 0,0296 volt
Potensial sel konsentrasi umumnya relatif kecil dan semakin berkurang selama proses reaksi berlangsung. Reaksi akan terus berlangsung hingga kedua wadah mencapai keadaan konsentrasi ion sama. Apabila konsentrasi ion kedua wadah telah sama, Esel = 0 dan aliran elektron terhenti.
Aplikasi pengetahuan sel volta dapat ditemukan dalam kehidupan sehari-hari. Salah satu contoh aplikasi sel volta adalah penggunaan batu baterai. Baterai adalah sel galvani, atau gabungan dari beberapa sel galvani , yang dapat digunakan sebagai sumber arus listrik. Beberapa jenis baterai yang kita gunakan dalam kehidupan sehari-hari, antara lain :
1. The Dry Cell Battery
Dikenal dengan istilah sel Leclanche atau batu baterai kering. Pada batu baterai kering, logam seng berfungsi sebagai anoda. Katodanya berupa batang grafit yang berada di tengah sel. Terdapat satu lapis mangan dioksida dan karbon hitam mengelilingi batang grafit dan pasta kental yang terbuat dari amonium klorida dan seng (II) klorida yang berfungsi sebagai elektrolit. Potensial yang dihasilkan sekitar 1,5 volt.
Reaksi selnya adalah sebagai berikut :
Katoda (+) : 2 NH4+(aq) + 2 MnO2(s) + 2 e- ——> Mn2O3(s) + 2 NH3(aq) + H2O(l) ……………… (1)
Anoda (-) : Zn(s) ——> Zn2+(aq) + 2 e- …………….. (2)
Reaksi Sel : 2 NH4+(aq) + 2 MnO2(s) + Zn(s) ——> Mn2O3(s) + 2 NH3(aq) + H2O(l) + Zn2+(aq) …………….. [(1) + (2)]
Pada batu baterai kering alkalin (baterai alkalin), amonium klorida yang bersifat asam pada sel kering diganti dengan kalium hidroksida yang bersifat basa (alkalin). Dengan bahan kimia ini, korosi pada bungkus logam seng dapat dikurangi.
2. The Mercury Battery
Sering digunakan pada dunia kedokteran dan industri elektronik. Sel merkuri mempunyai struktur menyerupai sel kering. Dalam baterai ini, anodanya adalah logam seng (membentuk amalgama dengan merkuri), sementara katodanya adalah baja (stainless steel cylinder). Elektrolit yang digunakan dalam baterai ini adalah merkuri (II) Oksida, HgO. Potensial yang dihasilkan sebesar 1,35 volt.
Reaksi selnya adalah sebagai berikut :
Katoda (+) : HgO(s) + H2O(l) + 2 e- ——> Hg(l) + 2 OH-(aq) …………………… (1)
Anoda (-) : Zn(Hg) + 2 OH-(aq) ——> ZnO(s) + H2O(l) + 2 e‑ ………………….. (2)
Reaksi sel : Zn(Hg) + HgO(s) ——> ZnO(s) + Hg(l) ………………………. [(1) + (2)]
3. The Lead Storage Battery
Dikenal dengan sebutan baterai mobil atau aki/accu. Baterai penyimpan plumbum (timbal) terdiri dari enam sel yang terhubung secara seri. Anoda pada setiap sel adalah plumbum (Pb), sedangkan katodanya adalah plumbum dioksida (PbO2). Elektroda dicelupkan ke dalam larutan asam sulfat (H2SO4).
Reaksi selnya pada saat pemakaian aki adalah sebagai berikut :
Katoda (+) : PbO2(s) + 4 H+(aq) + SO42-(aq) + 2 e- ——> PbSO4(s) + 2 H2O(l) ………………… (1)
Anoda (-) : Pb(s) + SO42-(aq) ——> PbSO4(s) + 2 e- …………………………… (2)
Reaksi sel : PbO2(s) + Pb(s) + 4 H+(aq) + 2 SO42-(aq) ——> 2 PbSO4(s) + 2 H2O(l) ……………………. [(1) + (2)]
Pada kondisi normal, masing-masing sel menghasilkan potensial sebesar 2 volt. Dengan demikian, sebuah aki dapat menghasilkan potensial sebesar 12 volt. Ketika reaksi diatas terjadi, kedua elektroda menjadi terlapisi oleh padatan plumbum (II) sulfat, PbSO4, dan asam sulfatnya semakin habis.
Semua sel galvani menghasilkan listrik sampai semua reaktannya habis, kemudian harus dibuang. Hal ini terjadi pada sel kering dan sel merkuri. Namun, sel aki dapat diisi ulang (rechargeable), sebab reaksi redoksnya dapat dibalik untuk menghasilkan reaktan awalnya. Reaksi yang terjadi saat pengisian aki merupakan kebalikan dari reaksi yang terjadi saat pemakaian aki.
4. The Lithium-Ion Battery
Digunakan pada peralatan elektronik, seperti komputer, kamera digital, dan telepon seluler. Baterai ini memiliki massa yang ringan sehingga bersifat portable. Potensial yang dihasilkan cukup besar, yaitu sekitar 3,4 volt. Anodanya adalah Li dalam grafit, sementara katodanya adalah oksida logam transisi (seperti CoO2). Elektrolit yang digunakan adalah pelarut organik dan sejumlah garam organik.
Reaksi yang terjadi adalah sebagai berikut :
Katoda (+) : Li+(aq) + CoO2(s) + e- ——> LiCoO2(s) ………………. (1)
Anoda : Li(s) ——> Li+ (aq) + e- ………………. (2)
Reaksi sel : Li(s) + CoO2(s) ——> LiCoO2(s) ……………………. [(1) + (2)]
5. Fuel Cell
Dikenal pula dengan istilah sel bahan bakar. Sebuah sel bahan bakar hidrogen-oksigen yang sederhana tersusun atas dua elektroda inert dan larutan elektrolit, seperti kalium hidroksida. Gelembung gas hidrogen dan oksigen dialirkan pada masing-masing elektroda. Potensial yang dihasilkan adalah sebesar 1,23 volt.
Reaksi yang terjadi adalah sebagai berikut :
Katoda (+) : O2(g) + 2 H2O(l) +4 e- ——> 4 OH-(aq) ………………..(1)Anoda (-) : 2 H2(g) + 4 OH-(aq) ——> 4 H2O(l) + 4 e- ……………………… (2)
Reaksi sel : O2(g) + 2 H2(g) ——> 2 H2O(l) ………………. [(1) + (2)]
Korosi adalah persitiwa teroksidasinya besi membentuk karat besi (Fe2O3.xH2O). Korosi besi disebabkan oleh beberapa faktor, seperti adanya air, gas oksigen, dan asam. Karat besi dapat mengurangi kekuatan besi. Oleh karena itu, korosi besi harus dicegah.
Korosi merupakan salah satu reaksi redoks yang tidak diharapkan. Reaksi yang terjadi selama proses korosi adalah sebagai berikut :
Katoda (+) : O2(g) + 4 H+(aq) + 4 e- ——> 2 H2O(l) ……………………… (1)
Anoda (-) : 2 Fe(s) ——> 2 Fe2+(aq) + 4 e- ………………. (2)
Reaksi sel : 2 Fe(s) + O2(g) + 4 H+(aq) ——> 2 Fe2+(aq) + 2 H2O(l) …………….. [(1) + (2)]
E°sel = +1,67 volt
Ion Fe2+ akan teroksidasi kembali oleh sejumlah gas oksigen menghasilkan ion Fe3+ (karat besi). Reaksi yang terjadi adalah sebagai berikut :
4 Fe2+(aq) + O2(g) + (4+2x) H2O(l) ——> 2 Fe2O3.xH2O(s) + 8 H+(aq)
Untuk melindung logam besi dari proses korosi, beberapa metode proteksi dapat diterapkan, antara lain :
1. Melapisi permukaan logam besi dengan lapisan cat
2. Melapisi permukaan logam besi dengan lapisan minyak (gemuk)
3. Melapisi permukaan logam besi dengan oksida inert (seperti Cr2O3 atau Al2O3)
4. Proteksi Katodik (Pengorbanan Anoda)
Suatu metode proteksi logam besi dengan menggunakan logam-logam yang lebih reaktif dibandingkan besi (logam-logam dengan E°red lebih kecil dari besi), seperti seng dan magnesium. Dengan metode ini, logam-logam yang lebih reaktif tersebut akan teroksidasi, sehingga logam besi terhindar dari peristiwa oksidasi. Oleh karena logam pelindung, dalam hal ini “mengorbankan diri” untuk melindungi besi, maka logam tersebut harus diganti secara berkala.
5. Melapisi permukaan logam besi dengan logam lain yang inert terhadap korosi
Metode ini menggunakan logam-logam yang kurang reaktif dibandingkan besi (logam-logam dengan E°red lebih besar dari besi), seperti timah dan tembaga. Pelapisan secara sempurna logam inert pada permukaan logam besi dapat mencegah kontak besi dengan agen penyebab korosi (air, asam, dan gas oksigen). Akan tetapi, apabila terdapat cacat atau terkelupas (tergores), akan terjadi percepatan korosi.
Elektrokimia II : Sel Elektrolisis
Dalam tulisan ini, kita akan mempelajari tentang reaksi-reaksi sel elektrolisis (aspek kualitatif). Kemudian kita akan menghitung massa endapan logam dan volume gas yang dihasilkan dari reaksi elektrolisis (aspek kuantitatif). Kita juga akan mempelajari pengaruh besarnya arus listrik terhadap kuantitas produk elektrolisis yang dihasilkan.
Sel Elektrolisis adalah sel yang menggunakan arus listrik untuk menghasilkan reaksi redoks yang diinginkan dan digunakan secara luas di dalam masyarakat kita. Baterai aki yang dapat diisi ulang merupakan salah satu contoh aplikasi sel elektrolisis dalam kehidupan sehari-hari (lihat Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta). Baterai aki yang sedang diisi kembali (recharge) mengubah energi listrik yang diberikan menjadi produk berupa bahan kimia yang diinginkan. Air, H2O, dapat diuraikan dengan menggunakan listrik dalam sel elektrolisis. Proses ini akan mengurai air menjadi unsur-unsur pembentuknya. Reaksi yang terjadi adalah sebagai berikut : 2 H2O(l) ——> 2 H2(g) + O2(g)
Rangkaian sel elektrolisis hampir menyerupai sel volta. Yang membedakan sel elektrolisis dari sel volta adalah, pada sel elektrolisis, komponen voltmeter diganti dengan sumber arus (umumnya baterai). Larutan atau lelehan yang ingin dielektrolisis, ditempatkan dalam suatu wadah. Selanjutnya, elektroda dicelupkan ke dalam larutan maupun lelehan elektrolit yang ingin dielektrolisis. Elektroda yang digunakan umumnya merupakan elektroda inert, seperti Grafit (C), Platina (Pt), dan Emas (Au). Elektroda berperan sebagai tempat berlangsungnya reaksi. Reaksi reduksi berlangsung di katoda, sedangkan reaksi oksidasi berlangsung di anoda. Kutub negatif sumber arus mengarah pada katoda (sebab memerlukan elektron) dan kutub positif sumber arus tentunya mengarah pada anoda. Akibatnya, katoda bermuatan negatif dan menarik kation-kation yang akan tereduksi menjadi endapan logam. Sebaliknya, anoda bermuatan positif dan menarik anion-anion yang akan teroksidasi menjadi gas. Terlihat jelas bahwa tujuan elektrolisis adalah untuk mendapatkan endapan logam di katoda dan gas di anoda.
Ada dua tipe elektrolisis, yaitu elektrolisis lelehan (leburan) dan elektrolisis larutan. Pada proses elektrolisis lelehan, kation pasti tereduksi di katoda dan anion pasti teroksidasi di anoda. Sebagai contoh, berikut ini adalah reaksi elektrolisis lelehan garam NaCl (yang dikenal dengan istilah sel Downs) :
Katoda (-) : 2 Na+(l) + 2 e- ——> 2 Na(s) ……………….. (1)
Anoda (+) : 2 Cl-(l) Cl2(g) + 2 e- ……………….. (2)
Reaksi sel : 2 Na+(l) + 2 Cl-(l) ——> 2 Na(s) + Cl2(g) ……………….. [(1) + (2)]
Reaksi elektrolisis lelehan garam NaCl menghasilkan endapan logam natrium di katoda dan gelembung gas Cl2 di anoda. Bagaimana halnya jika lelehan garam NaCl diganti dengan larutan garam NaCl? Apakah proses yang terjadi masih sama? Untuk mempelajari reaksi elektrolisis larutan garam NaCl, kita mengingat kembali Deret Volta (lihat Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta).
Pada katoda, terjadi persaingan antara air dengan ion Na+. Berdasarkan Tabel Potensial Standar Reduksi, air memiliki E°red yang lebih besar dibandingkan ion Na+. Ini berarti, air lebih mudah tereduksi dibandingkan ion Na+. Oleh sebab itu, spesi yang bereaksi di katoda adalah air. Sementara, berdasarkan Tabel Potensial Standar Reduksi, nilai E°red ion Cl- dan air hampir sama. Oleh karena oksidasi air memerlukan potensial tambahan (overvoltage), maka oksidasi ion Cl- lebih mudah dibandingkan oksidasi air. Oleh sebab itu, spesi yang bereaksi di anoda adalah ion Cl-. Dengan demikian, reaksi yang terjadi pada elektrolisis larutan garam NaCl adalah sebagai berikut :
Katoda (-) : 2 H2O(l) + 2 e- ——> H2(g) + 2 OH-(aq) ……………….. (1)
Anoda (+) : 2 Cl-(aq) ——> Cl2(g) + 2 e- ……………….. (2)
Reaksi sel : 2 H2O(l) + 2 Cl-(aq) ——> H2(g) + Cl2(g) + 2 OH-(aq) ……………………. [(1) + (2)]
Reaksi elektrolisis larutan garam NaCl menghasilkan gelembung gas H2 dan ion OH‑ (basa) di katoda serta gelembung gas Cl2 di anoda. Terbentuknya ion OH- pada katoda dapat dibuktikan dengan perubahan warna larutan dari bening menjadi merah muda setelah diberi sejumlah indikator fenolftalein (pp). Dengan demikian, terlihat bahwa produk elektrolisis lelehan umumnya berbeda dengan produk elektrolisis larutan.
Selanjutnya kita mencoba mempelajari elektrolisis larutan Na2SO4. Pada katoda, terjadi persaingan antara air dan ion Na+. Berdasarakan nilai E°red, maka air yang akan tereduksi di katoda. Di lain sisi, terjadi persaingan antara ion SO42- dengan air di anoda. Oleh karena bilangan oksidasi S pada SO4-2 telah mencapai keadaan maksimumnya, yaitu +6, maka spesi SO42- tidak dapat mengalami oksidasi. Akibatnya, spesi air yang akan teroksidasi di anoda. Reaksi yang terjadi adalah sebagai berikut :
Katoda (-) : 4 H2O(l) + 4 e- ——> 2 H2(g) + 4 OH-(aq) ……………….. (1)
Anoda (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e- ……………….. (2)
Reaksi sel : 6 H2O(l) ——> 2 H2(g) + O2(g) + 4 H+(aq) + 4 OH-(aq) …………………….. [(1) + (2)] 6 H2O(l) ——> 2 H2(g) + O2(g) + 4 H2O(l) …………………. [(1) + (2)]
2 H2O(l) ——> 2 H2(g) + O2(g) …………………….. [(1) + (2)]
Dengan demikian, baik ion Na+ maupun SO42-, tidak bereaksi. Yang terjadi justru adalah peristiwa elektrolisis air menjadi unsur-unsur pembentuknya. Hal yang serupa juga ditemukan pada proses elektrolisis larutan Mg(NO3)2 dan K2SO4.
Bagaimana halnya jika elektrolisis lelehan maupun larutan menggunakan elektroda yang tidak inert, seperti Ni, Fe, dan Zn? Ternyata, elektroda yang tidak inert hanya dapat bereaksi di anoda, sehingga produk yang dihasilkan di anoda adalah ion elektroda yang larut (sebab logam yang tidak inert mudah teroksidasi). Sementara, jenis elektroda tidak mempengaruhi produk yang dihasilkan di katoda. Sebagai contoh, berikut adalah proses elektrolisis larutan garam NaCl dengan menggunakan elektroda Cu :
Katoda (-) : 2 H2O(l) + 2 e- ——> H2(g) + 2 OH-(aq) …………………….. (1)
Anoda (+) : Cu(s) ——> Cu2+(aq) + 2 e- …………………….. (2)
Reaksi sel : Cu(s) + 2 H2O(l) ——> Cu2+(aq) + H2(g) + 2 OH-(aq) …………………….. [(1) + (2)]
Dari pembahasan di atas, kita dapat menarik beberapa kesimpulan yang berkaitan dengan reaksi elektrolisis :
- Baik elektrolisis lelehan maupun larutan, elektroda inert tidak akan bereaksi; elektroda tidak inert hanya dapat bereaksi di anoda
- Pada elektrolisis lelehan, kation pasti bereaksi di katoda dan anion pasti bereaksi di anoda
- Pada elektrolisis larutan, bila larutan mengandung ion alkali, alkali tanah, ion aluminium, maupun ion mangan (II), maka air yang mengalami reduksi di katoda
- Pada elektrolisis larutan, bila larutan mengandung ion sulfat, nitrat, dan ion sisa asam oksi, maka air yang mengalami oksidasi di anoda
Salah satu aplikasi sel elektrolisis adalah pada proses yang disebut penyepuhan. Dalam proses penyepuhan, logam yang lebih mahal dilapiskan (diendapkan sebagai lapisan tipis) pada permukaan logam yang lebih murah dengan cara elektrolisis. Baterai umumnya digunakan sebagai sumber listrik selama proses penyepuhan berlangsung. Logam yang ingin disepuh berfungsi sebagai katoda dan lempeng perak (logam pelapis) yang merupakan logam penyepuh berfungsi sebagai anoda. Larutan elektrolit yang digunakan harus mengandung spesi ion logam yang sama dengan logam penyepuh (dalam hal ini, ion perak). Pada proses elektrolisis, lempeng perak di anoda akan teroksidasi dan larut menjadi ion perak. Ion perak tersebut kemudian akan diendapkan sebagai lapisan tipis pada permukaan katoda. Metode ini relatif mudah dan tanpa biaya yang mahal, sehingga banyak digunakan pada industri perabot rumah tangga dan peralatan dapur.
Setelah kita mempelajari aspek kualitatif reaksi elektrolisis, kini kita akan melanjutkan dengan aspek kuantitatif sel elektrolisis. Seperti yang telah disebutkan di awal, tujuan utama elektrolisis adalah untuk mengendapkan logam dan mengumpulkan gas dari larutan yang dielektrolisis. Kita dapat menentukan kuantitas produk yang terbentuk melalui konsep mol dan stoikiometri.
Satuan yang sering ditemukan dalam aspek kuantitatif sel elektrolisis adalah Faraday (F). Faraday didefinisikan sebagai muatan (dalam Coulomb) mol elektron. Satu Faraday equivalen dengan satu mol elektron. Demikian halnya, setengah Faraday equivalen dengan setengah mol elektron. Sebagaimana yang telah kita ketahui, setiap satu mol partikel mengandung 6,02 x 1023 partikel. Sementara setiap elektron mengemban muatan sebesar 1,6 x 10-19 C. Dengan demikian :
1 Faraday = 1 mol elektron = 6,02 x 1023 partikel elektron x 1,6 x 10-19 C/partikel elektron 1 Faraday = 96320 C (sering dibulatkan menjadi 96500 C untuk mempermudah perhitungan)
Hubungan antara Faraday dan Coulomb dapat dinyatakan dalam persamaan berikut :
Faraday = Coulomb / 96500
Coulomb = Faraday x 96500
Coulomb adalah satuan muatan listrik. Coulomb dapat diperoleh melalui perkalian arus listrik (Ampere) dengan waktu (detik). Persamaan yang menunjukkan hubungan Coulomb, Ampere, dan detik adalah sebagai berikut :
Coulomb = Ampere x Detik
Q = I x t
Dengan demikian, hubungan antara Faraday, Ampere, dan detik adalah sebagai berikut :
Faraday = (Ampere x Detik) / 96500
Faraday = (I x t) / 96500
Dengan mengetahui besarnya Faraday pada reaksi elektrolisis, maka mol elektron yang dibutuhkan pada reaksi elektrolisis dapat ditentukan. Selanjutnya, dengan memanfaatkan koefisien reaksi pada masing-masing setengah reaksi di katoda dan anoda, kuantitas produk elektrolisis dapat ditemukan.
Berikut ini adalah beberapa contoh soal aspek kuantitatif sel elektrolisis :
1. Pada elektrolisis larutan AgNO3 dengan elektroda inert dihasilkan gas oksigen sebanyak 5,6 L pada STP. Berapakah jumlah listrik dalam Coulomb yang dialirkan pada proses tersebut?
Penyelesaian :
Reaksi elektrolisis larutan AgNO3 dengan elektroda inert adalah sebagai berikut :
Katoda (-) : Ag+ + e- ——> Ag
Anoda (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e-
Gas O2 terbentuk di anoda. Mol gas O2 yang terbentuk sama dengan 5,6 L / 22,4 L = ¼ mol O2
Berdasarkan persamaan reaksi di anoda, untuk menghasilkan ¼ mol gas O2, maka jumlah mol elektron yang terlibat adalah sebesar 4 x ¼ = 1 mol elektron.
1 mol elektron = 1 Faraday = 96500 C
Jadi, jumlah listrik yang terlibat adalah sebesar 96500 C
2. Unsur Fluor dapat diperoleh dengan cara elektrolisis lelehan NaF. Berapakah waktu yang diperlukan untuk mendapatkan 15 L gas fluorin ( 1 mol gas mengandung 25 L gas) dengan arus sebesar 10 Ampere?
Penyeleasian :
Reaksi elektrolisis lelehan NaF adalah sebagai berikut :
K (-) : Na+(l) + e- ——> Na(s)
A (-) : 2 F-(l) ——> F2(g) + 2 e-
Gas F2 terbentuk di anoda. Mol gas F2 yang terbentuk adalah sebesar 15 L / 25 L = 0,6 mol F2
Berdasarkan persamaan reaksi di anoda, untuk menghasilkan 0,6 mol gas F2, akan melibatkan mol elektron sebanyak 2 x 0,6 = 1,2 mol elektron
1,2 mol elektron = 1,2 Faraday
Waktu yang diperlukan dapat dihitung melalui persamaan berikut :
Faraday = (Ampere x Detik) / 96500
1,2 = (10 x t) / 96500
t = 11850 detik = 3,22 jam
Jadi, diperlukan waktu selama 3,22 jam untuk menghasilkan 15 L gas fluorin
3. Arus sebesar 0,452 A dilewatkan pada sel elektrolisis yang mengandung lelehan CaCl2 selama 1,5 jam. Berapakah jumlah produk yang dihasilkan pada masing-masing elektroda?
Penyelesaian :
Reaksi elektrolisis lelehan CaCl2 adalah sebagai berikut :
K (-) : Ca2+(l) + 2 e- ——> Ca(s)
A (+) : 2 Cl-(l) ——> Cl2(g) + 2 e-
Mol elektron yang terlibat dalam reaksi ini dapat dihitung dengan persamaan berikut :
Faraday = (Ampere x Detik) / 96500
Faraday = (0,452 x 1,5 x 3600) / 96500 mol elektron
Berdasarkan persamaan reaksi di katoda, mol Ca yang dihasilkan adalah setengah dari mol elektron yang terlibat. Dengan demikian, massa Ca yang dihasilkan adalah :
Massa Ca = mol Ca x Ar Ca
Massa Ca = ½ x (0,452 x 1,5 x 3600) / 96500 x 40 = 0,506 gram Ca
Berdasarkan persamaan reaksi di anoda, mol gas Cl2 yang dihasilkan adalah setengah dari mol elektron yang terlibat. Dengan demikian, volume gas Cl2 (STP) yang dihasilkan adalah :
Volume gas Cl2 = mol Cl2 x 22,4 L
Volume gas Cl2 = ½ x (0,452 x 1,5 x 3600) / 96500 x 22.4 L = 0,283 L gas Cl2
Jadi, produk yang dihasilkan di katoda adalah 0,506 gram endapan Ca dan produk yang dihasilkan di anoda adalah 0,283 L gas Cl2 (STP)
4. Dalam sebuah percobaan elektrolisis, digunakan dua sel yang dirangkaikan secara seri. Masing-masing sel menerima arus listrik yang sama. Sel pertama berisi larutan AgNO3, sedangkan sel kedua berisi larutan XCl3. Jika setelah elektrolisis selesai, diperoleh 1,44 gram logam Ag pada sel pertama dan 0,12 gram logam X pada sel kedua, tentukanlah massa molar (Ar) logam X tersebut!
Penyelesaian :
Reaksi elektrolisis larutan AgNO3 :
K (-) : Ag+(aq) + e- ——> Ag(s)
A (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e-
Logam Ag yang dihasilkan sebanyak 1,44 gram; dengan demikian, mol logam Ag yang dihasilkan sebesar 1,44 / 108 mol Ag
Berdasarkan persamaan reaksi di katoda, mol elektron yang dibutuhkan untuk menghasilkan logam Ag sama dengan mol logam Ag (koefisien reaksinya sama)
Sehingga, mol elektron yang digunakan dalam proses elektrolisis ini adalah sebesar 1,44 / 108 mol elektron
Reaksi elektrolisis larutan XCl3 :
K (-) : X3+(aq) + 3 e- ——> X(s)
A (+) : 2 Cl-(l) ——> Cl2(g) + 2 e-
Arus yang sama dialirkan pada sel kedua, sehingga, mol elektron yang digunakan dalam proses elektrolisis ini sama seperti sebelumya, yaitu sebesar 1,44 / 108 mol elektron
Berdasarkan persamaan reaksi di katoda, mol logam X yang dihasilkan sama dengan 1 / 3 kali mol elektron, yaitu sebesar 1 / 3 x 1,44 / 108 mol X
Massa logam X = 0,12 gram; dengan demikian, massa molar (Ar) logam X adalah sebagai berikut:
mol = massa / Ar
Ar = massa / mol
Ar = 0,12 / (1 / 3 x 1,44 / 108) = 27
0 komentar:
Posting Komentar